Abstract
As one type of object detection, small object detection has been widely used in daily-life-related applications with many real-time requirements, such as autopilot and navigation. Although deep-learning-based object detection methods have achieved great success in recent years, they are not effective in small object detection and most of them cannot achieve real-time processing. Therefore, this paper proposes a single-stage small object detection network (SODNet) that integrates the specialized feature extraction and information fusion techniques. An adaptively spatial parallel convolution module (ASPConv) is proposed to alleviate the lack of spatial information for target objects and adaptively obtain the corresponding spatial information through multi-scale receptive fields, thereby improving the feature extraction ability. Additionally, a split-fusion sub-module (SF) is proposed to effectively reduce the time complexity of ASPConv. A fast multi-scale fusion module (FMF) is proposed to alleviate the insufficient fusion of both semantic and spatial information. FMF uses two fast upsampling operators to first unify the resolution of the multi-scale feature maps extracted by the network and then fuse them, thereby effectively improving the small object detection ability. Comparative experimental results prove that the proposed method considerably improves the accuracy of small object detection on multiple benchmark datasets and achieves a high real-time performance.
Funder
Sichuan Science and Technology Program
Subject
General Earth and Planetary Sciences
Reference53 articles.
1. R-fcn: Object detection via region-based fully convolutional networks;Dai;arXiv,2016
2. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
3. Yolov3: An incremental improvement;Redmon;arXiv,2018
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献