A Efficient and Accurate UAV Detection Method Based on YOLOv5s

Author:

Feng Yunsong1,Wang Tong12,Jiang Qiangfu2,Zhang Chi1,Sun Shaohang1,Qian Wangjiahe1

Affiliation:

1. State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China

2. School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China

Abstract

Due to the limited computational resources of portable devices, target detection models for drone detection face challenges in real-time deployment. To enhance the detection efficiency of low, slow, and small unmanned aerial vehicles (UAVs), this study introduces an efficient drone detection model based on YOLOv5s (EDU-YOLO), incorporating lightweight feature extraction and balanced feature fusion modules. The model employs the ShuffleNetV2 network and coordinate attention mechanisms to construct a lightweight backbone network, significantly reducing the number of model parameters. It also utilizes a bidirectional feature pyramid network and ghost convolutions to build a balanced neck network, enriching the model’s representational capacity. Additionally, a new loss function, EloU, replaces CIoU to improve the model’s positioning accuracy and accelerate network convergence. Experimental results indicate that, compared to the YOLOv5s algorithm, our model only experiences a minimal decrease in mAP by 1.1%, while reducing GFLOPs from 16.0 to 2.2 and increasing FPS from 153 to 188. This provides a substantial foundation for networked optoelectronic detection of UAVs and similar slow-moving aerial targets, expanding the defensive perimeter and enabling earlier warnings.

Funder

Key Projects of the Foundation Strengthening Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3