Selective feature block and joint IoU loss for object detection

Author:

Wang Junyi12ORCID,Hua Ruzhao1,Jiang Xuezheng1,Song Kechen3,Meng Qinggang4,Saada Mohamad4

Affiliation:

1. Faculty of Robot Science and Engineering, Northeastern University, China

2. Foshan Graduate School of Innovation, Northeastern University, China

3. School of Mechanical Engineering and Automation, Northeastern University, China

4. Department of Computer Science, Loughborough University, UK

Abstract

Object detection is an important problem in the field of computer vision, and feature fusion and bounding box regression are indispensable in mainstream object detection approaches. However, some detectors adopt Feature Pyramid Network, which increases training and detection time. In terms of the regression loss function, some recent techniques based on Intersection over Union (IoU) loss have negative effects on bounding box regression. To overcome these shortcomings, we propose Selective Feature Block (SFBlock) and Joint IoU (JIoU) loss in this article. The proposed SFBlock adaptively selects the features extracted from the Backbone and fuses them into a new feature. We add a penalty term of the intersection area between the prediction box and the target box on Generalized IoU (GIoU) loss to solve the problem that GIoU loss degenerates into IoU loss when the prediction box and the target box are surrounded by each other. A large number of ablation experiments and comparative experiments are carried out to prove the effectiveness of the proposed methods on various models and datasets.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3