A New Technique for Impervious Surface Mapping and Its Spatio-Temporal Changes from Landsat and Sentinel-2 Images

Author:

Hua Lizhong1,Wang Haibo1,Zhang Huafeng2,Sun Fengqin1,Li Lanhui1ORCID,Tang Lina3ORCID

Affiliation:

1. College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

2. Xiamen Greening Management Center, Xiamen 361004, China

3. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Abstract

Accurately mapping and monitoring the urban impervious surface area (ISA) is crucial for understanding the impact of urbanization on heat islands and sustainable development. However, less is known about ISA spectra heterogeneity and their similarity to bare land, wetland, and high-rise-building shadows. This study proposes a feature-based approach using decision tree classification (FDTC) to map ISAs and their spatio-temporal changes in a coastal city in southeast China using Landsat 5 TM, Landsat 8 OLI/TIRS, and Sentinel-2 images from 2009 to 2021. Atmospheric correction using simplified dark object subtraction (DOS) was applied to Landsat imagery, which enabled faster computation. FDTC’s performance was evaluated with three sensors with different spectral and spatial resolutions, with parameter thresholds held constant across remote-sensing images. FDTC produces a high average overall accuracy (OA) of 94.53%, a kappa coefficient (KC) of 0.855, and a map-level image classification efficacy (MICE) of 0.851 for ISA mapping over the studied period. In comparison with other indices such as BCI (biophysical composition index), PISI (automated built-up extraction index), and ABEI (perpendicular impervious surface index), the FDTC demonstrated higher accuracy and separability for extracting ISA and bare land as well as wetland and high-rise buildings. The results of FDTC were also consistent with those of two open-source ISA products and other remote sensing indices. The study found that the ISA in Xiamen City increased from 16.33% to 26.17% over the past 13 years due to vegetation occupation, encroachment onto bare land, and reclamation of coastal areas. While the expansion significantly reduced urban vegetation in rapidly urbanizing areas of Xiamen, ambitious park greening programs and massive redevelopment of urban villages resulted in a modest but continuous increase in urban green space.

Funder

Fujian Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3