A 30 m resolution dataset of China's urban impervious surface area and green space, 2000–2018

Author:

Kuang Wenhui,Zhang Shu,Li Xiaoyong,Lu Dengsheng

Abstract

Abstract. Accurate and timely maps of urban underlying land properties at the national scale are of significance in improving habitat environment and achieving sustainable development goals. Urban impervious surface (UIS) and urban green space (UGS) are two core components for characterizing urban underlying environments. However, the UIS and UGS are often mosaicked in the urban landscape with complex structures and composites. The “hard classification” or binary single type cannot be used effectively to delineate spatially explicit urban land surface property. Although six mainstream datasets on global or national urban land use and land cover products with a 30 m spatial resolution have been developed, they only provide the binary pattern or dynamic of a single urban land type, which cannot effectively delineate the quantitative components or structure of intra-urban land cover. Here we propose a new mapping strategy to acquire the multitemporal and fractional information of the essential urban land cover types at a national scale through synergizing the advantage of both big data processing and human interpretation with the aid of geoknowledge. Firstly, the vector polygons of urban boundaries in 2000, 2005, 2010, 2015 and 2018 were extracted from China's Land Use/cover Dataset (CLUD) derived from Landsat images. Secondly, the national settlement and vegetation percentages were retrieved using a sub-pixel decomposition method through a random forest algorithm using the Google Earth Engine (GEE) platform. Finally, the products of China's UIS and UGS fractions (CLUD-Urban) at a 30 m resolution were developed in 2000, 2005, 2010, 2015 and 2018. We also compared our products with six existing mainstream datasets in terms of quality and accuracy. The assessment results showed that the CLUD-Urban product has higher accuracies in urban-boundary and urban-expansion detection than other products and in addition that the accurate UIS and UGS fractions were developed in each period. The overall accuracy of urban boundaries in 2000–2018 are over 92.65 %; and the correlation coefficient (R) and root mean square errors (RMSEs) of UIS and UGS fractions are 0.91 and 0.10 (UIS) and 0.89 and 0.11 (UGS), respectively. Our result indicates that 71 % of pixels of urban land were mosaicked by the UIS and UGS within cities in 2018; a single UIS classification may highly increase the mapping uncertainty. The high spatial heterogeneity of urban underlying covers was exhibited with average fractions of 68.21 % for UIS and 22.30 % for UGS in 2018 at a national scale. The UIS and UGS increased unprecedentedly with annual rates of 1605.56 and 627.78 km2 yr−1 in 2000–2018, driven by fast urbanization. The CLUD-Urban mapping can fill the knowledge gap in understanding impacts of the UIS and UGS patterns on ecosystem services and habitat environments and is valuable for detecting the hotspots of waterlogging and improving urban greening for planning and management practices. The datasets can be downloaded from https://doi.org/10.5281/zenodo.4034161 (Kuang et al., 2020a).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference79 articles.

1. As-syakur, A. R., Adnyana, I. W. S., Arthana, I. W., and Nuarsa, I. W.: Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area, Remote Sens., 4, 2957–2970, https://doi.org/10.3390/rs4102957, 2012.

2. Bai, X., Shi, P., and Liu, Y.: Society: realizing China's urban dream, Nature, 509, 158–160, https://doi.org/10.1038/509158a, 2014.

3. Bai, X., Dawson, R. J., Urge-Vorsatz, D., Delgado, G. C., Barau, A. S., Dhakal, S., Dodman, D., Leonardsen, L., Masson-Delmotte, V., Roberts, D., and Schultz, S.: Six research priorities for cities and climate change, Nature, 555, 19–21, https://doi.org/10.1038/d41586-018-02409-z, 2018.

4. Belward, A. (Ed.): The IGBP-DIS global 1 km land cover data set “DISCover”: proposal and implementation plans. Report of the Land Cover Working Group of the IGBP-DIS, IGBP-DIS Working Paper, No. 13, Stockholm, 1996.

5. Bontemps, S., Defourny, P., Bogaert, E., Arino, O., Kalogirou, V., and Perez, J.: Globcover 2009. Products Description and Validation Reports, available at: https://epic.awi.de/31014/16/GLOBCOVER2009_Validation_Report_2-2.pdf (last access: 18 April 2019), 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3