Abstract
With the development of deep learning, semantic segmentation technology has gradually become the mainstream technical method in large-scale multi-temporal landcover classification. Large-scale and multi-temporal are the two significant characteristics of Landsat imagery. However, the mainstream single-temporal semantic segmentation network lacks the constraints and assistance of pre-temporal information, resulting in unstable results, poor generalization ability, and inconsistency with the actual situation in the multi-temporal classification results. In this paper, we propose a multi-temporal network that introduces pre-temporal information as prior constrained auxiliary knowledge. We propose an element-wise weighting block module to improve the fine-grainedness of feature optimization. We propose a chained deduced classification strategy to improve multi-temporal classification’s stability and generalization ability. We label the large-scale multi-temporal Landsat landcover classification dataset with an overall classification accuracy of over 90%. Through extensive experiments, compared with the mainstream semantic segmentation methods, our proposed multi-temporal network achieves state-of-the-art performance with good robustness and generalization ability.
Funder
the National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献