Investigating the Potential of Crop Discrimination in Early Growing Stage of Change Analysis in Remote Sensing Crop Profiles

Author:

Wei Mengfan12,Wang Hongyan1,Zhang Yuan1,Li Qiangzi1,Du Xin1,Shi Guanwei12,Ren Yiting12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Currently, remote sensing crop identification is mostly based on all available images acquired throughout crop growth. However, the available image and data resources in the early growth stage are limited, which makes early crop identification challenging. Different crop types have different phenological characteristics and seasonal rhythm characteristics, and their growth rates are different at different times. Therefore, making full use of crop growth characteristics to augment crop growth difference information at different times is key to early crop identification. In this study, we first calculated the differential features between different periods as new features based on images acquired during the early growth stage. Secondly, multi-temporal difference features of each period were constructed by combination, then a feature optimization method was used to obtain the optimal feature set of all possible combinations in different periods and the early key identification characteristics of different crops, as well as their stage change characteristics, were explored. Finally, the performance of classification and regression tree (Cart), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Machine (SVM) classifiers in recognizing crops in different periods were analyzed. The results show that: (1) There were key differences between different crops, with rice changing significantly in period F, corn changing significantly in periods E, M, L, and H, and soybean changing significantly in periods E, M, N, and H. (2) For the early identification of rice, the land surface water index (LSWI), simple ratio index (SR), B11, and normalized difference tillage index (NDTI) contributed most, while B11, normalized difference red-edge3 (NDRE3), LSWI, the green vegetation index (VIgreen), red-edge spectral index (RESI), and normalized difference red-edge2 (NDRE2) contributed greatly to corn and soybean identification. (3) Rice could be identified as early as 13 May, with PA and UA as high as 95%. Corn and soybeans were identified as early as 7 July, with PA and UA as high as 97% and 94%, respectively. (4) With the addition of more temporal features, recognition accuracy increased. The GBDT and RF performed best in identifying the three crops in the early stage. This study demonstrates the feasibility of using crop growth difference information for early crop recognition, which can provide a new idea for early crop recognition.

Funder

National Key R&D Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

National Science Foundation of China

Key Program of High-resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference81 articles.

1. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs;Atzberger;Remote Sens.,2013

2. Progress and perspectives on agricultural remote sensing research and applications in China;Chen;J. Remote Sens.,2016

3. Research status and prospect of feature variable selection for crop remote sensing classification;Jia;Resour. Sci.,2013

4. Zhao, H., Chen, Z., Jiang, H., Jing, W., Sun, L., and Feng, M. (2019). Evaluation of Three Deep Learning Models for Early Crop Classification Using Sentinel-1A Imagery Time Series—A Case Study in Zhanjiang, China. Remote Sens., 11.

5. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine;You;ISPRS J. Photogramm. Remote Sens.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3