Eucalyptus Plantation Area Extraction Based on SLPSO-RFE Feature Selection and Multi-Temporal Sentinel-1/2 Data

Author:

Lin Xiaoqi1,Ren Chao1ORCID,Li Yi2,Yue Weiting1ORCID,Liang Jieyu1,Yin Anchao1ORCID

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541006, China

2. Guangxi Zhuang Autonomous Region Mineral Resources Reserve Evaluation Center, Nanning 530022, China

Abstract

An accurate and efficient estimation of eucalyptus plantation areas is of paramount significance for forestry resource management and ecological environment monitoring. Currently, combining multidimensional optical and SAR images with machine learning has become an important method for eucalyptus plantation classification, but there are still some challenges in feature selection. This study proposes a feature selection method that combines multi-temporal Sentinel-1 and Sentinel-2 data with SLPSO (social learning particle swarm optimization) and RFE (Recursive Feature Elimination), which reduces the impact of information redundancy and improves classification accuracy. Specifically, this paper first fuses multi-temporal Sentinel-1 and Sentinel-2 data, and then carries out feature selection by combining SLPSO and RFE to mitigate the effects of information redundancy. Next, based on features such as the spectrum, red-edge indices, texture characteristics, vegetation indices, and backscatter coefficients, the study employs the Simple Non-Iterative Clustering (SNIC) object-oriented method and three different types of machine-learning models: Random Forest (RF), Classification and Regression Trees (CART), and Support Vector Machines (SVM) for the extraction of eucalyptus plantation areas. Each model uses a supervised-learning method, with labeled training data guiding the classification of eucalyptus plantation regions. Lastly, to validate the efficacy of selecting multi-temporal data and the performance of the SLPSO–RFE model in classification, a comparative analysis is undertaken against the classification results derived from single-temporal data and the ReliefF–RFE feature selection scheme. The findings reveal that employing SLPSO–RFE for feature selection significantly elevates the classification precision of eucalyptus plantations across all three classifiers. The overall accuracy rates were noted at 95.48% for SVM, 96% for CART, and 97.97% for RF. When contrasted with classification outcomes from multi-temporal data and ReliefF–RFE, the overall accuracy for the trio of models saw an increase of 10%, 8%, and 8.54%, respectively. The accuracy enhancement was even more pronounced when juxtaposed with results from single-temporal data and ReliefF-RFE, at increments of 15.25%, 13.58%, and 14.54% respectively. The insights from this research carry profound theoretical implications and practical applications, particularly in identifying and extracting eucalyptus plantations leveraging multi-temporal data and feature selection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3