Crop Mapping without Labels: Investigating Temporal and Spatial Transferability of Crop Classification Models Using a 5-Year Sentinel-2 Series and Machine Learning

Author:

Rusňák Tomáš1ORCID,Kasanický Tomáš2ORCID,Malík Peter2,Mojžiš Ján2ORCID,Zelenka Ján2ORCID,Sviček Michal3,Abrahám Dominik3,Halabuk Andrej1ORCID

Affiliation:

1. Institute of Landscape Ecology, Slovak Academy of Sciences, v.v.i, Štefánikova 3, 814 99 Bratislava, Slovakia

2. Institute of Informatics, Slovak Academy of Sciences, v.v.i, Dúbravská Cesta 9, 845 07 Bratislava, Slovakia

3. National Agricultural and Food Center (NPPC), Hlohovecká 2, 951 41 Lužianky, Slovakia

Abstract

Multitemporal crop classification approaches have demonstrated high performance within a given season. However, cross-season and cross-region crop classification presents a unique transferability challenge. This study addresses this challenge by adopting a domain generalization approach, e.g., by training models on multiple seasons to improve generalization to new, unseen target years. We utilize a comprehensive five-year Sentinel-2 dataset over different agricultural regions in Slovakia and a diverse crop scheme (eight crop classes). We evaluate the performance of different machine learning classification algorithms, including random forests, support vector machines, quadratic discriminant analysis, and neural networks. Our main findings reveal that the transferability of models across years differs between regions, with the Danubian lowlands demonstrating better performance (overall accuracies ranging from 91.5% in 2022 to 94.3% in 2020) compared to eastern Slovakia (overall accuracies ranging from 85% in 2022 to 91.9% in 2020). Quadratic discriminant analysis, support vector machines, and neural networks consistently demonstrated high performance across diverse transferability scenarios. The random forest algorithm was less reliable in generalizing across different scenarios, particularly when there was a significant deviation in the distribution of unseen domains. This finding underscores the importance of employing a multi-classifier analysis. Rapeseed, grasslands, and sugar beet consistently show stable transferability across seasons. We observe that all periods play a crucial role in the classification process, with July being the most important and August the least important. Acceptable performance can be achieved as early as June, with only slight improvements towards the end of the season. Finally, employing a multi-classifier approach allows for parcel-level confidence determination, enhancing the reliability of crop distribution maps by assuming higher confidence when multiple classifiers yield similar results. To enhance spatiotemporal generalization, our study proposes a two-step approach: (1) determine the optimal spatial domain to accurately represent crop type distribution; and (2) apply interannual training to capture variability across years. This approach helps account for various factors, such as different crop rotation practices, diverse observational quality, and local climate-driven patterns, leading to more accurate and reliable crop classification models for nationwide agricultural monitoring.

Funder

Integrated Infrastructure Operational Programme funded by the ERDF

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. How Much Does Multi-Temporal Sentinel-2 Data Improve Crop Type Classification?;Vuolo;Int. J. Appl. Earth Obs. Geoinf.,2018

2. Recent Advances in Domain Adaptation for the Classification of Remote Sensing Data;Tuia;IEEE Geosci. Remote Sens. Mag.,2016

3. Phenology-Based Sample Generation for Supervised Crop Type Classification;Belgiu;Int. J. Appl. Earth Obs. Geoinf.,2021

4. Towards Scalable within-Season Crop Mapping with Phenology Normalization and Deep Learning;Yang;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2023

5. Early- and in-Season Crop Type Mapping without Current-Year Ground Truth: Generating Labels from Historical Information via a Topology-Based Approach;Lin;Remote Sens. Environ.,2022

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3