Simulating the Leaf Area Index of Rice from Multispectral Images

Author:

Liu Shenzhou,Zeng WenzhiORCID,Wu Lifeng,Lei Guoqing,Chen HaoruiORCID,Gaiser Thomas,Srivastava Amit KumarORCID

Abstract

Accurate estimation of the leaf area index (LAI) is essential for crop growth simulations and agricultural management. This study conducted a field experiment with rice and measured the LAI in different rice growth periods. The multispectral bands (B) including red edge (RE, 730 nm ± 16 nm), near-infrared (NIR, 840 nm ± 26 nm), green (560 nm ± 16 nm), red (650 nm ± 16 nm), blue (450 nm ± 16 nm), and visible light (RGB) were also obtained by an unmanned aerial vehicle (UAV) with multispectral sensors (DJI-P4M, SZ DJI Technology Co., Ltd.). Based on the bands, five vegetation indexes (VI) including Green Normalized Difference Vegetation Index (GNDVI), Leaf Chlorophyll Index (LCI), Normalized Difference Red Edge Index (NDRE), Normalized Difference Vegetation Index (NDVI), and Optimization Soil-Adjusted Vegetation Index (OSAVI) were calculated. The semi-empirical model (SEM), the random forest model (RF), and the Extreme Gradient Boosting model (XGBoost) were used to estimate rice LAI based on multispectral bands, VIs, and their combinations, respectively. The results indicated that the GNDVI had the highest accuracy in the SEM (R2 = 0.78, RMSE = 0.77). For the single band, NIR had the highest accuracy in both RF (R2 = 0.73, RMSE = 0.98) and XGBoost (R2 = 0.77, RMSE = 0.88). Band combination of NIR + red improved the estimation accuracy in both RF (R2 = 0.87, RMSE = 0.65) and XGBoost (R2 = 0.88, RMSE = 0.63). NDRE and LCI were the first two single VIs for LAI estimation using both RF and XGBoost. However, putting more than one VI together could only increase the LAI estimation accuracy slightly. Meanwhile, the bands + VIs combinations could improve the accuracy in both RF and XGBoost. Our study recommended estimating rice LAI by a combination of red + NIR + OSAVI + NDVI + GNDVI + LCI + NDRE (2B + 5V) with XGBoost to obtain high accuracy and overcome the potential over-fitting issue (R2 = 0.91, RMSE = 0.54).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3