Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information

Author:

Yu Junru1ORCID,Zhang Yu1ORCID,Song Zhenghua1,Jiang Danyao1ORCID,Guo Yiming1ORCID,Liu Yanfu1ORCID,Chang Qingrui12

Affiliation:

1. College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China

2. Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, Xianyang 712100, China

Abstract

The Leaf Area Index (LAI) strongly influences vegetation evapotranspiration and photosynthesis rates. Timely and accurately estimating the LAI is crucial for monitoring vegetation growth. The unmanned aerial vehicle (UAV) multispectral digital camera platform has been proven to be an effective tool for this purpose. Currently, most remote sensing estimations of LAIs focus on cereal crops, with limited research on economic crops such as apples. In this study, a method for estimating the LAI of an apple orchard by extracting spectral and texture information from UAV multispectral images was proposed. Specifically, field measurements were conducted to collect LAI data for 108 sample points during the final flowering (FF), fruit setting (FS), and fruit expansion (FE) stages of apple growth in 2023. Concurrently, UAV multispectral images were obtained to extract spectral and texture information (Gabor transform). The Support Vector Regression Recursive Feature Elimination (SVR-REF) was employed to select optimal features as inputs for constructing models to estimate the LAI. Finally, the optimal model was used for LAI mapping. The results indicate that integrating spectral and texture information effectively enhances the accuracy of LAI estimation, with the relative prediction deviation (RPD) for all models being greater than 2. The Categorical Boosting (CatBoost) model established for FF exhibits the highest accuracy, with a validation set R2, root mean square error (RMSE), and RPD of 0.867, 0.203, and 2.482, respectively. UAV multispectral imagery proves to be valuable in estimating apple orchard LAIs, offering real-time monitoring of apple growth and providing a scientific basis for orchard management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3