Spatio-temporal mapping of leaf area index in rice: spectral indices and multi-scale texture comparison derived from different sensors

Author:

Li Changming,Teng Xing,Tan Yong,Zhang Yong,Zhang Hongchen,Xiao Dan,Luo Shanjun

Abstract

IntroductionMonitoring the leaf area index (LAI), which is directly related to the growth status of rice, helps to optimize and meet the crop’s fertilizer requirements for achieving high quality, high yield, and environmental sustainability. The remote sensing technology of the unmanned aerial vehicle (UAV) has great potential in precision monitoring applications in agriculture due to its efficient, nondestructive, and rapid characteristics. The spectral information currently widely used is susceptible to the influence of factors such as soil background and canopy structure, leading to low accuracy in estimating the LAI in rice.MethodsIn this paper, the RGB and multispectral images of the critical period were acquired through rice field experiments. Based on the remote sensing images above, the spectral indices and texture information of the rice canopy were extracted. Furthermore, the texture information of various images at multiple scales was acquired through resampling, which was utilized to assess the estimation capacity of LAI.Results and discussionThe results showed that the spectral indices (SI) based on RGB and multispectral imagery saturated in the middle and late stages of rice, leading to low accuracy in estimating LAI. Moreover, multiscale texture analysis revealed that the texture of multispectral images derived from the 680 nm band is less affected by resolution, whereas the texture of RGB images is resolution dependent. The fusion of spectral and texture features using random forest and multiple stepwise regression algorithms revealed that the highest accuracy in estimating LAI can be achieved based on SI and texture features (0.48 m) from multispectral imagery. This approach yielded excellent prediction results for both high and low LAI values. With the gradual improvement of satellite image resolution, the results of this study are expected to enable accurate monitoring of rice LAI on a large scale.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3