Deep Learning-Based Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communication

Author:

Liu YufeiORCID,Zhou Feng,Qiao Gang,Zhao Yunjiang,Yang Guang,Liu Xinyu,Lu Yinheng

Abstract

A deep learning-based cyclic shift keying spread spectrum (CSK-SS) underwater acoustic (UWA) communication system is proposed for improving the performance of the conventional system in low signal-to-noise ratio and multipath effects. The proposed deep learning-based system involves the long- and short-term memory (LSTM) architecture-based neural network model as the receiving module of the system. The neural network is fed with the communication signals passing through known channel impulse responses in the offline stage, and then directly used to demodulate the received signal in the online stage to reduce the influence of the above factors. Numerical simulation and actual data results suggest that the deep learning-based CSK-SS UWA communication system is more reliable communication than a conventional system. In particular, the collected experimental data show that after preprocessing, when the communication rate is less than 180 bps, a bit error rate of less than 10−3 can be obtained at a signal-to-noise ratio of −8 dB.

Funder

the National Key R&D Program of China;National Natural Science Foundation of China;the Science and Technology on Underwater Information and Control Laboratory

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3