Design of Deep Learning Acoustic Sonar Receiver with Temporal/ Spatial Underwater Channel Feature Extraction Capability

Author:

Chih-Ta Yen ,Un-Hung Chen

Abstract

In this study, deep learning network technology is employed to solve the problem of rapid changes in underwater channels. The modulation techniques employed are frequency-shift keying (FSK) and the BELLHOP module of MATLAB; they are used to create water with multipath, Doppler shifts, and additive Gaussian white noise such that underwater acoustic receiving signals simulating the actual ocean environment can be obtained. The southwest coastal area of Taiwan is simulated in the manuscript. The results reveal that optimizing the environment by using the virtual time reversal mirror (VTRM) technique can generally mitigate the bit error rates (BERs) of the deep learning network’s model receiver and traditional demodulation receiver. Lastly, seven deep learning networks are deployed to demodulate the FSK signals, and these approaches are compared with traditional demodulation techniques to determine the deep learning network techniques that are most suitable for marine environments.

Publisher

Taiwan Association of Engineering and Technology Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3