Nanocomposite Nanofibers of Graphene—Fundamentals and Systematic Developments

Author:

Kausar Ayesha123ORCID,Ahmad Ishaq123,Zhao Tingkai14,Aldaghri Osamah5ORCID,Ibnaouf Khalid H.5ORCID,Eisa M. H.5

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa

3. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

4. School of Materials Science & Engineering, Northwestern Polytechnical University, Xi’an 710072, China

5. Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

Abstract

Research on polymer nanocomposite nanofibers has seen remarkable growth over the past several years. One of the main driving forces for this progress is the increasing applicability of polymer nanocomposite nanofibers for technological applications. This review basically aims to present the current state of manufacturing polymer/graphene nanofiber nanocomposites, using appropriate techniques. Consequently, various conducting and thermoplastic polymers have been processed with graphene nano-reinforcement to fabricate the nanocomposite nanofibers. Moreover, numerous methods have been adopted for the fabrication of polymer/graphene nanocomposites and nanofibers including interfacial polymerization, phase separation, freeze drying, template synthesis, drawing techniques, etc. For the formation of polymer/graphene nanocomposite nanofibers, electrospinning can be preferable due to various advantages such as the need for simple equipment, control over morphology, and superior properties of the obtained material. The techniques such as solution processing, melt spinning, and spin coating have also been used to manufacture nanofibers. Here, the choice of manufacturing techniques and parameters affects the final nanofiber morphology, texture, and properties. The manufactured nanocomposite nanofibers have been examined for exceptional structural, microstructure, thermal, and other physical properties. Moreover, the properties of polymer/graphene nanofiber rely on the graphene content, dispersion, and matrix–nanofiller interactions. The potential of polymer/graphene nanocomposite nanofibers has been investigated for radiation shielding, supercapacitors, membranes, and the biomedical field. Hence, this review explains the literature-driven significance of incorporating graphene in polymeric nanofibers. Conclusively, most of the studies focused on the electrospinning technique to design polymer/graphene nanofibers. Future research in this field may lead to advanced innovations in the design and technical applications of nanocomposite nanofibers. To the best of our knowledge, research reports are available on this topic; however, the stated literature is not in a compiled and updated form. Therefore, field researchers may encounter challenges in achieving future advancements in the area of graphene-based nanocomposite nanofibers without first consulting the recent literature, such as an assembled review, to gain necessary insights, etc. Consequently, this state-of-the-art review explores the manufacturing, properties, and potential of polymer/graphene nanocomposite nanofibers.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3