Investigation on Mechanical and Thermal Properties of 3D-Printed Polyamide 6, Graphene Oxide and Glass-Fibre-Reinforced Composites under Dry, Wet and High Temperature Conditions

Author:

Ichakpa Mariah1ORCID,Goodyear Matthew1ORCID,Duthie Jake1,Duthie Matthew1ORCID,Wisely Ryan1,MacPherson Allan1,Keyte John1,Pancholi Ketan1ORCID,Njuguna James1ORCID

Affiliation:

1. Centre of Advanced Engineering Materials, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7AQ, UK

Abstract

This study is focused on 3D printing of polyamide 6 (PA6), PA6/graphene oxide (PA6/GO) and PA6/glass-fibre-reinforced (PA6/GF) composites. The effect of graphene oxide and glass-fibre reinforcement on 3D-printed PA6 is explored for improvement of the interfacial bond and interlaminar strength in ambient, wet and high temperature conditions relating to electric car battery box requirements. The influence of environmental conditions and process parameters on the 3D-printed polymer composites quality is also examined. Commercial PA6 filament was modified with GO to investigate the thermal and mechanical properties. The modified composites were melt-compounded using a twin-feed extruder to produce an improved 3D-printing filament. The improved filaments were then used to 3D-print test samples for tensile and compression mechanical testing using universal testing machines and thermal characterisation was performed following condition treatment in high temperature and water for correlation to dry/ambient samples. The study results show the studied materials were mostly suitable in dry/ambient conditions. PA6/GF samples demonstrated the highest strength of all three samples in ambient and high-temperature conditions, but the least strength in wet conditions due to osmotic pressure at the fibre/matrix interface that led to fibre breakage. The introduction of 0.1% GO improved the tensile strength by 33%, 11% and 23% in dry/ambient, dry/high temperature and wet/ambient conditions, respectively. The wet PA6/GO samples demonstrated the least strength in comparison to the ambient and high-temperature conditions. Notwithstanding this, PA6/GO exhibited the highest tensile strength in the wet condition, making it the most suitable for a high-strength, water-exposed engineering application.

Funder

International Scholarship exchange of PhD candidates and academic staff

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference49 articles.

1. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing;Attaran;Bus. Horiz.,2017

2. Additive manufacturing: Technology, applications and research needs;Guo;Front. Mech. Eng.,2013

3. Technology Strategy Board (2012). A Landscape for the Future of High Value Manufacturing in the UK.

4. Producing hip implants of titanium alloys by additive manufacturing;Popovich;Int. J. Bioprint.,2016

5. Additive manufacturing of biomedical devices: An overview;Murr;Mater. Technol.,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3