Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties

Author:

Sokolov Maksim,Nugmanova Alsu,Shkolin AndreyORCID,Zvyagina Alexandra,Senchikhin IvanORCID,Kalinina MariaORCID

Abstract

A novel ion-mediated self-assembly method was applied for integration of graphene oxide (GO), propanoic- and glutaric-substituted perylenes (glu-PDI and PA-PDI), and Zn (OAc)2 into new hybrid materials with photocatalytic properties. The structuring of chromophores through coordination bonding on the GO surface is controlled by the chemistry of the PDI linkers. Four-substituted glu-PDI forms consolidated microporous particles, whereas di-substituted PA-PDI binds with GO into a macroporous gel-like structure. The GO/PDI controls without Zn2+ ions form only non-integrated dispersions. Both hybrids can initiate photodestruction of 1,5-dihydroxynaphtalene (DHN) due to the effective charge separation between the PDI components and GO by generating hydroxyl radicals determined by luminescent probing with terephthalic acid. The reduction mechanism of photodegradation was confirmed by MALDI-TOF spectroscopy. The structure of the hybrids controls the rate of photodegradation process. The glu-PDI-based photocatalyst shows a smaller rate of photoreduction of 3.3 × 10−2 min−1 than that with PA-PDA (4 × 10−2 min−1) due to diffusion limitations. Our results suggest that the ion-mediated synthesis is a useful and rational alternative for the conventional synthesis of GO-based functional hybrid materials through aromatic stacking between the graphene oxide and organic chromophores to produce new affordable and efficient photocatalysts.

Funder

the Russian Science Foundation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3