A Small Target Tea Leaf Disease Detection Model Combined with Transfer Learning

Author:

Yao Xianze1,Lin Haifeng1ORCID,Bai Di2,Zhou Hongping3ORCID

Affiliation:

1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

2. College of Information Management, Nanjing Agricultural University, Nanjing 210037, China

3. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Tea cultivation holds significant economic value, yet the leaves of tea plants are frequently susceptible to various pest and disease infestations. Consequently, there is a critical need for research focused on precisely and efficiently detecting these threats to tea crops. The investigation of a model capable of effectively identifying pests and diseases in tea plants is often hindered by challenges, such as limited datasets of pest and disease samples and the small size of detection targets. To address these issues, this study has chosen TLB, a common pest and disease in tea plants, as the primary research subject. The approach involves the application of transfer learning in conjunction with data augmentation as a fundamental methodology. This technique entails transferring knowledge acquired from a comprehensive source data domain to the model, aiming to mitigate the constraints of limited sample sizes. Additionally, to tackle the challenge of detecting small targets, this study incorporates the decoupling detection head TSCODE and integrates the Triplet Attention mechanism into the E-ELAN structure within the backbone to enhance the model’s focus on the TLB’s small targets and optimize detection accuracy. Furthermore, the model’s loss function is optimized based on the Wasserstein distance measure to mitigate issues related to sensitivity in localizing small targets. Experimental results demonstrate that, in comparison to the conventional YOLOv7 tiny model, the proposed model exhibits superior performance on the TLB small sample dataset, with precision increasing by 6.5% to 92.2%, recall by 4.5% to 86.6%, and average precision by 5.8% to 91.5%. This research offers an effective solution for identifying tea pests and diseases, presenting a novel approach to developing a model for detecting such threats in tea cultivation.

Funder

Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project

Nanjing Modern Agricultural Machinery Equipment and Technological Innovation Demonstration Projects

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3