Detection and identification of tea leaf diseases based on AX-RetinaNet

Author:

Bao Wenxia,Fan Tao,Hu Gensheng,Liang Dong,Li Haidong

Abstract

AbstractThe accurate detection and identification of tea leaf diseases are conducive to its precise prevention and control. Convolutional neural network (CNN) can automatically extract the features of diseased tea leaves in the images. However, tea leaf images taken in natural environments have problems, such as complex backgrounds, dense leaves, and large-scale changes. The existing CNNs have low accuracy in detecting and identifying tea leaf diseases. This study proposes an improved RetinaNet target detection and identification network, AX-RetinaNet, which is used for the automatic detection and identification of tea leaf diseases in natural scene images. AX-RetinaNet uses an improved multiscale feature fusion module of the X-module and adds a channel attention module, Attention. The feature fusion module of the X-module obtains feature maps with rich information through multiple fusions of multi-scale features. The attention module assigns a network adaptively optimized weight to each feature map channel so that the network can select more effective features and reduce the interference of redundant features. This study also uses data augmentation methods to solve the problem of insufficient samples. Experimental results show the detection and identification accuracy of AX-RetinaNet for tea leaf diseases in natural scene images is better than the existing target detection and identification networks, such as SSD, RetinaNet, YOLO-v3, YOLO-v4, Centernet, M2det, and EfficientNet. The AX-RetinaNet detection and identification results indicated the mAP value of 93.83% and the F1-score value of 0.954. Compared with the original network, the mAP value, recall value, and identification accuracy increased by nearly 4%, by 4%, and by nearly 1.5%, respectively.

Funder

Major Natural Science Research Projects in Colleges and Universities of Anhui Province

Open Research Fund of National Engineering Research Center for Agro-Ecological Big Data Analysis and Application of Anhui University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3