SmokeFireNet: A Lightweight Network for Joint Detection of Forest Fire and Smoke

Author:

Chen Yi1ORCID,Wang Fang2

Affiliation:

1. School of Arts and Design, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

2. College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, China

Abstract

In recent years, forest fires have been occurring frequently around the globe, affected by extreme weather and dry climate, causing serious economic losses and environmental pollution. In this context, timely detection of forest fire smoke is crucial for realizing real-time early warning of fires. However, fire and smoke from forest fires can spread to cover large areas and may affect distant areas. In this paper, a lightweight joint forest fire and smoke detection network, SmokeFireNet, is proposed, which employs ShuffleNetV2 as the backbone for efficient feature extraction, effectively addressing the computational efficiency challenges of traditional methods. To integrate multi-scale information and enhance the semantic feature extraction capability, a feature pyramid network (FPN) and path aggregation network (PAN) are introduced in this paper. In addition, the FPN network is optimized by a lightweight DySample upsampling operator. The model also incorporates efficient channel attention (ECA), which can pay more attention to the detection of forest fires and smoke regions while suppressing irrelevant features. Finally, by embedding the receptive field block (RFB), the model further improves its ability to understand contextual information and capture detailed features of fire and smoke, thus improving the overall detection accuracy. The experimental results show that SmokeFireNet is better than other mainstream target detection algorithms in terms of average APall of 86.2%, FPS of 114, and GFLOPs of 8.4, and provides effective technical support for forest fire prevention work in terms of average precision, frame rate, and computational complexity. In the future, the SmokeFireNet model is expected to play a greater role in the field of forest fire prevention and make a greater contribution to the protection of forest resources and the ecological environment.

Funder

National Natural Science Foundation of China

Start-up Fund for New Talented Researchers of Nanjing Vocational University of Industry Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3