Deficit Irrigation Using Saline Water of Fruit Trees under Water Scarcity Conditions of Southern Tunisia

Author:

El Mokh Fathia,Nagaz Kamel,Masmoudi Mohamed Moncef,Ben Mechlia Netij,Ghiglieri GiorgioORCID

Abstract

Both water scarcity and salinity are major obstacles for crop production in arid parts of Tunisia and require adoption of strategies aimed at improving water-use efficiency. Field experiments on deficit irrigation (DI) of table olive, orange trees, and grapevines with saline water (2 dS·m−1) were conducted in the arid region of Médenine, Tunisia. Three irrigation treatments were compared with the farmer’s method (FM) over two years (2013–2014): deficit irrigation (DI75) and (DI50), which received 75% and 50% less water than full irrigation (FI), respectively, and full compensation of the crop evapotranspiration (FI). Measurements included seasonal changes in soil water content, soil salinity, yield, fruit quality, and economic return. Results showed that in-season water limitations, roughly between 700–250 mm, caused significant reductions in yield and fruit weight, but improved the total soluble solids of fruits. Under FI, DI75, DI50, and FM, average yields were 26.6, 20.1, 14.7, and 21.2 t·ha−1 for orange, 4.5, 4.0, 3.1, and 3.5 t·ha−1 for table olive, and 3.8, 3.4, 3.1, and 3.5 t·ha−1 for grapevine, respectively. Soil salinity build up increased linearly with decreasing irrigation water. Irrigation water productivity (IWP), although lowest for FM, was relatively high (3.30–4.30 kg·m−3 for orange, 0.65–1.20 kg·m−3 for table olive, and 0.74–1.30 kg·m−3 for grapevine). Economic evaluation showed that the FI strategy generated the greatest net income (1800–6630 USD·ha−1), followed by DI75 (1350–3940 USD·ha−1), FM (844–4340 USD·ha−1), and DI50 (600–2400 USD·ha−1). The results show an important potential for reasonably sustaining farmer’s income under increased water scarcity.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3