Exogenous Nitric Oxide and Silicon Applications Alleviate Water Stress in Apricots

Author:

Bakır Asuman Gundogdu,Bolat Ibrahim,Korkmaz Kubra,Hasan Md. MahadiORCID,Kaya OzkanORCID

Abstract

Many plants confront several environmental stresses including heat, water stress, drought, salinity and high-metal concentrations that are crucial in defining plant productivity at different stages of their life cycle. Nitric oxide (NO) and Silicon (Si) are very effective molecules related in most of them and in varied biochemical events that have proven to be protective during cellular injury caused by some stress conditions like water stress. In the current work, we studied the effect of Si and NO alone and NO + Si interactive application on the response of plants exposed to water deficiency and well-watered plants for the Milord apricot variety. Water stress caused a reduce in chlorophyll content, dry and fresh weight, leaf area, stomatal conductivity, leaf relative water content and nutrient elements, while it caused an increase in leaf temperature, leaf proline, leaf malondialdehyde (MDA) content and membrane permeability. Si, NO and Si + NO combination treatments under water stress conditions significantly decreased the adverse effects of water stress on leaf temperature, leaf area, dry and fresh weight, stomata conductivity, relative water content, membrane permeability, L-proline and MDA content. The shoot dry weight, chlorophyll content, stomata conductivity and leaf relative water content in Si + NO treated apricot saplings increased by 59%, 55%, 12% and 8%, respectively. Combined treatment (Si + NO) was detected to be more effective than single applications (Si or NO) on some physiological, biochemical, morphological and nutritional properties of apricot under water stress conditions.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3