Improving Peach Fruit Quality Traits Using Deficit Irrigation Strategies in Southern Tunisia Arid Area

Author:

Toumi Ines,Zarrouk OlfaORCID,Ghrab MohamedORCID,Nagaz KamelORCID

Abstract

The peach (Prunus persica L.) is one of Tunisia’s major commercial fruit crops and is considered one of the biggest water consumers of all crops. In warm and arid areas of southern Tunisia, irrigation is necessary to ensure orchard longevity and high yield and fruit quality. Nevertheless, under water-scarcity conditions and low water quality, water management should rely on efficient deficit irrigation strategies. In this study, sustained deficit irrigation (DI) and partial root-zone drying (PRD50) at 50% of crop evapotranspiration (ETc) were evaluated for their impact on the primary and secondary metabolites of the peach fruit of early cultivar Flordastar grown in the Tataouine region. A full irrigation (FI) treatment at 100%, etc., was used as a control treatment. Color, dry-matter content, firmness, organic acids, sugars, phenolic compounds, vitamin C, β-carotene and minerals were assessed on harvested mature fruits. Dry-matter content and firmness increased significantly under DI and PRD50 (13% and 15.5%). DI fruit had the highest soluble-solid content (SSC), reaching Brix values of 14.3°. Fruit sorbitol and sucrose contents were not affected by Di and PRD50. Higher glucose in fruit juice was observed in PRD50 (23%) and DI (21.5%) compared to FI, which had the highest malic acid content (33.5–37%). Quinic and citric acids decreased with DI and PRD50, while almost all individual phenolic compounds increased with deficit irrigation. Hydroxycinnamates and anthocyanins were significantly higher in fruits harvested from DI and PRD50 treatments. Proanthocyanidins (catechin and epicatechin) were only improved by DI, while flavone compounds and vitamin C were not affected by irrigation restrictions. β-carotene was higher in fruits yielded under FI (0.71 mg/100 g DM) than DI and PRD50 (0.21–0.43 mg/100 g DM). Macro- and micronutrients significantly increased in DI and PRD50 fruit. A significant difference between DI and PRD50 fruits was observed for Zn and Fe concentrations. This research highlights the positive impact of reduced irrigation on bioactive-fruit quality attributes and the suitability of PRD50 and DI as tools for irrigation management in arid areas of southern Tunisia, contributing to water-saving in orchards and the improvement of fruit commercial value.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. Climate Change 2013. The Physical Science Basis Contribution of Working Group to the Fifth Assessment Report of the Intergouvernmental Panel on Climate Change,2013

2. European degree-day climatologies and trends for the period 1951-2011

3. Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia)

4. Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

5. 2. United Nations 2017 http://www.fao.org/nr/water/aquastat/tables/WorldData-Irrigation_eng.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3