Abstract
The purpose of the present study is to investigate the impact of rain, snow and hail on potential gradient (PG), as observed in a period of ten years in Xanthi, northern Greece. An anticorrelation between PG and rainfall was observed for rain events that lasted several hours. When the precipitation rate was up to 2 mm/h, the decrease in PG was between 200 and 1300 V/m, in most cases being around 500 V/m. An event with rainfall rates up to 11 mm/h produced the largest drop in PG, of 2 kV/m. Shortly after rain, PG appeared to bounce back to somewhat higher values than the ones of fair-weather conditions. A decrease in mean hourly PG was observed, which was around 2–4 kV/m during the hail events which occurred concurrently with rain and from 0 to 3.5 kV/m for hail events with no rain. In the case of no drop, no concurrent drop in temperature was observed, while, for the other cases, it appeared that, for each degree drop in temperature, the drop in hourly mean PG was 1000 V/m; hence, we assume that the intensity of the hail event regulates the drop in PG. The frequency distribution of 1-minute PG exhibits a complex structure during hail events and extend from −18 to 11 kV/m, with most of the values in the negative range. During snow events, 1-minute PG exhibited rapid fluctuations between high positive and high negative values, its frequency distribution extending from −10 to 18 kV/m, with peaks at −10 and 3 kV/m.
Funder
PANhellenic infrastructure for Atmospheric Composition and climatE change
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献