The Influence of the Atmospheric Electric Field on Soil Redox Potential

Author:

Kourtidis Konstantinos1ORCID,Vorenhout Michel23ORCID

Affiliation:

1. Department of Environmental Engineering, Demokritus University of Thrace, 67100 Xanthi, Greece

2. Institute for Biodiversity and Ecosystem Dynamics—Freshwater and Marine Ecology (IBED-FAME), University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands

3. MVH Consult, 2317 BD Leiden, The Netherlands

Abstract

Atmospheric electric fields (AEFs) have recently been proposed to link to biogeochemical processes below the Earth’s surface by means of a charge separation. Despite the potential importance of such a process, up to now we almost completely lack the relevant measurements. Here, we extend the database with 2 months of concurrent soil redox and atmospheric electric field measurements. It appears that the changes that occur in the order of days in soil redox are at periods anticorrelated with the logarithm of the positive values of the AEF. However, weather conditions might be driving the anticorrelation rather than a direct link, as the synoptic weather conditions appear to influence soil redox. Soil redox does not respond to changes in the AEF that are of shorter duration, either minutes or several hours, except in some cases of very negative AEFs or very high field strengths in the presence of moderate rainfall. In such a case, the variation in soil redox could be associated with a mechanism that transfers charge to the ground or brings ions towards the ground’s surface. To reach firmer conclusions on the effect of the AEF on soil redox, we need to extend the range of collocated soil redox and AEF measurements so that they cover at least one year.

Funder

COST

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3