The Effects of Fog on the Atmospheric Electrical Field Close to the Surface

Author:

Yair Yoav1ORCID,Yaniv Roy12

Affiliation:

1. School of Sustainability, Reichmann University, Herzliya 4610101, Israel

2. Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

Ground-based measurements of the atmospheric electric field have been recorded continuously since 2013 at the Wise Observatory, located in the Negev Desert Highland in southern Israel. The data have been used for defining the characteristics of fair weather and to identify the signatures of dust storms, lightning activity, and clouds. We report here on new results from observations of the variability of the electric field (transformed into the potential gradient, PG) during several foggy days, along with meteorological data on wind speed and relative humidity. The results show a substantial increase in the electric field (up to 400–650 V m−1) compared with the mean fair weather values observed at the site (180–190 V m−1). This increase is especially clear during times of high relative humidity values (95%+) and low wind speed (<3 m s−1). This increase is likely a consequence of the reduction in the atmospheric conductivity at low levels, due to the attachment of charge carriers to fog droplets. Based on this discovery, it is suggested that continuously monitoring the electric field may offer an additional operational tool to alert for the onset and termination of fog at specific locations, such as airports and harbors, where this nowcasting capability is required.

Funder

Israeli Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference45 articles.

1. The Carnegie Curve;Harrison;Surv. Geophys.,2013

2. Ion-aerosol-cloud processes in the lower atmosphere;Harrison;Rev. Geophys.,2003

3. Urban smoke concentrations at Kew, London, 1898-2004;Harrison;Atmos. Environ.,2006

4. Fair weather atmospheric electricity;Harrison;J. Phys. Conf. Ser.,2011

5. An overview of Earth’s global electric circuit and atmospheric conductivity;Rycroft;Sp. Sci. Rev.,2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3