Assessment of a Fusion Sea Surface Temperature Product for Numerical Weather Predictions in China: A Case Study

Author:

Qu Ping,Wang WeiORCID,Liu Zhijie,Gong Xiaoqing,Shi Chunxiang,Xu Bin

Abstract

A common approach used for multi-source observation data blending is the fusion method. This study assesses the applicability of the first-generation fusion sea surface temperature (SST) product of the China Meteorological Administration (CMA) in the Yellow–Bohai Sea region for numerical weather predictions. First, daily and 6 h fusion SST measurements are compared with data derived from 21 buoy sites for 2019 to 2020. The error analysis results show that the root-mean-square error (RMSE) of the daily SST ranges from 0.64 to 1.36 °C (overall RMSE of 0.996 °C). The RMSE of the 6 h SST varies from 0.64 to 1.73 °C (overall RMSE of 1.06 °C). According to the simulation result, the SST difference could affect the value and location distribution of liquid water content in the fog area. A lower SST is favorable for increasing the liquid water content, which fits the mechanisms of advection fog formation by warm air flowing over colder water.

Funder

Collaborative Innovation of Meteorological Science and Technique in Huang-Bohai Region

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3