A quantitative model based on grey theory for sea surface temperature prediction

Author:

Meng Fanyu,Gu Jilin,Wang Ling-en,Qin Zhibin,Gao Mingyao,Chen Junhong,Li Xueming

Abstract

In order to predict sea surface temperature (SST), combined with the genetic algorithm and the least-squares method, a GM(1,1|sin) power model prediction method based on similarity deviation is proposed. We first combined the data of two consecutive years into a new time series, analyzed the similarity of the data of the previous year, and obtained the most similar year and the corresponding new time series. Then, we established a GM(1,1|sin) power model to predict SST. In model validation, we predicted the monthly average SST from 2016 to 2020 with the data from 1985 to 2015, 2016, 2017, 2018, and 2019. The validation results showed that the maximum mean relative error (MRE) was 13.28%, the minimum MRE was 5.54%, and the average MRE and the root mean square error (RMSE) were 9.81% and 1.0627, respectively. All of evaluation metrics of Lin’s concordance correlation coefficient (LCCC) and the ratio of performance to deviation (RPD) were excellent. We iteratively predicted the monthly average SST from 2016 to 2020 with the data from 1985 to 2015, the maximum MRE was 13.91%, the minimum was 7.80%, and the average MRE, RMSE, LCCC and RPD are 11.07% 1.0603, 0.9894, and 7.497, respectively. Compared with GM(1,1), GM(1,1|sin + cos), and GM(1,1|sin) models, the proposed model outperformed these models with at least 50% in the MRE. It proves that the proposed model can be regarded as a better solution to predicting SST.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference31 articles.

1. Characteristics and application on GM(1,1) model based on sequence of random vibration;Cui;Math. Pract. Knowl.,2012

2. Application of phase space reconstruction and ANFIS model in SST forecasting;Dong;J. Trop. Oceanogr.,2008

3. Sea surface temperature prediction algorithm based on STL model;He;Mar. Environ. Sci.,2020

4. Application of threshold auto‐regressive model based on genetic algorithm in sea surface temperature prediction;Jin;Mar. Environ. Sci. Technol.,1999

5. sea surface temperature and high water temperature occurrence prediction using a long short-term memory model;Kim;Remote Sens. (Basel).,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3