The Effect of Sea Surface Temperature on Relative Humidity and Atmospheric Visibility of a Winter Sea Fog Event over the Yellow-Bohai Sea

Author:

Liu Lili,Wang Xuelian,Li Yinghua,Wei Wang

Abstract

Sea fog is one of the main types of dangerous weather affecting offshore operations. The sea surface temperature (SST) has an important influence on the water vapor content and intensity of sea fog. In order to study the impact of SST on local relative humidity and atmospheric visibility, a sea fog episode that occurred over the Yellow Sea and Bohai Sea on 21 January 2013 was investigated through observational data, reanalysis data, and Weather Research and Forecasting (WRF) simulation. The results show that the influence of SST on the distribution of sea fog with different properties is inconsistent. Based on the time-varying equation of relative humidity, the changes in the advection, radiation, and turbulence effects on the relative humidity with respect to SST are explored through control and sensitivity experiments. The results show that the advection effect plays a decisive role in the generation and dissipation stages of sea fog. The increase (decrease) in SST weakens (strengthens) the radiative cooling and relative humidity. The contribution magnitude of advection effect to relative humidity is 10−5, while those of radiation and turbulence are 10−6 and 10−7, respectively. The atmospheric visibilities in the Bohai Sea and northern Yellow Sea decrease with increasing SST, which are mainly affected by the positive turbulence effect; whereas the atmospheric visibility in the central and southern Yellow Sea increases with SST, which is mainly influenced by the combined effects of U-direction advection, radiation, and turbulence. The stability related to boundary layer height plays an important role in water vapor condensation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3