Author:
Liu Lili,Wang Xuelian,Li Yinghua,Wei Wang
Abstract
Sea fog is one of the main types of dangerous weather affecting offshore operations. The sea surface temperature (SST) has an important influence on the water vapor content and intensity of sea fog. In order to study the impact of SST on local relative humidity and atmospheric visibility, a sea fog episode that occurred over the Yellow Sea and Bohai Sea on 21 January 2013 was investigated through observational data, reanalysis data, and Weather Research and Forecasting (WRF) simulation. The results show that the influence of SST on the distribution of sea fog with different properties is inconsistent. Based on the time-varying equation of relative humidity, the changes in the advection, radiation, and turbulence effects on the relative humidity with respect to SST are explored through control and sensitivity experiments. The results show that the advection effect plays a decisive role in the generation and dissipation stages of sea fog. The increase (decrease) in SST weakens (strengthens) the radiative cooling and relative humidity. The contribution magnitude of advection effect to relative humidity is 10−5, while those of radiation and turbulence are 10−6 and 10−7, respectively. The atmospheric visibilities in the Bohai Sea and northern Yellow Sea decrease with increasing SST, which are mainly affected by the positive turbulence effect; whereas the atmospheric visibility in the central and southern Yellow Sea increases with SST, which is mainly influenced by the combined effects of U-direction advection, radiation, and turbulence. The stability related to boundary layer height plays an important role in water vapor condensation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献