Abstract
Between 30 May and 6 June 2019 a series of new flanks eruptions interested the south-east flanks of Mt. Etna, Italy, forming lava flows and explosive activity that was most intense during the first day of the eruption; as a result, volcanic particles were dispersed towards Greece. Lidar measurements performed at the PANhellenic GEophysical observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), in Greece, reveal the presence of particles of volcanic origin above the area the days following the eruption. FLEXible PARTicle dispersion model (FLEXPART) simulations and satellite-based SO2 observations from the TROPOspheric Monitoring Instrument onboard the Sentinel-5 Precursor (TROPOMI/S5P), confirm the volcanic plume transport from Etna towards PANGEA and possible mixing with co-existing desert dust particles. Lidar and modeled values are in agreement and the derived sulfate mass concentration is approximately 15 μg/m3. This is the first time that Etna volcanic products are monitored at Antikythera station, in Greece with implications for the investigation of their role in the Mediterranean weather and climate.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献