Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019

Author:

Shang XiaoxiaORCID,Lipponen AnttiORCID,Filioglou MariaORCID,Sundström Anu-MaijaORCID,Parrington MarkORCID,Buchard Virginie,Darmenov Anton S.,Welton Ellsworth J.,Marinou EleniORCID,Amiridis VassilisORCID,Sicard Michael,Rodríguez-Gómez AlejandroORCID,Komppula Mika,Mielonen TeroORCID

Abstract

Abstract. In May–June 2019, smoke plumes from wildfires in Alberta, Canada, were advected all the way to Europe. To analyze the evolution of the plumes and to estimate the amount of smoke aerosols transported to Europe, retrievals from the spaceborne lidar CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) were used. The plumes were located with the help of a trajectory analysis, and the masses of smoke aerosols were retrieved from the CALIOP observations. The accuracy of the CALIOP mass retrievals was compared with the accuracy of ground-based lidars/ceilometer near the source in North America and after the long-range transport in Europe. Overall, CALIOP and the ground-based lidars/ceilometer produced comparable results. Over North America the CALIOP layer mean mass was 30 % smaller than the ground-based estimates, whereas over southern Europe that difference varied between 12 % and 43 %. Finally, the CALIOP mass retrievals were compared with simulated aerosol concentrations from two reanalysis models: MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2) and CAMS (Copernicus Atmospheric Monitoring System). The simulated total column aerosol optical depths (AODs) and the total column mass concentration of smoke agreed quite well with CALIOP observations, but the comparison of the layer mass concentration of smoke showed significant discrepancies. The amount of smoke aerosols in the model simulations was consistently smaller than in the CALIOP retrievals. These results highlight the limitations of such models and more specifically their limitation to reproduce properly the smoke vertical distribution. They indicate that CALIOP is a useful tool monitoring smoke plumes over secluded areas, whereas reanalysis models have difficulties in representing the aerosol mass in these plumes. This study shows the advantages of spaceborne aerosol lidars, e.g., being of paramount importance to monitor smoke plumes, and reveals the urgent need of future lidar missions in space.

Funder

Academy of Finland

HORIZON EUROPE Widening participation and spreading excellence

Hellenic Foundation for Research and Innovation

Horizon 2020

Agencia Estatal de Investigación

H2020 Environment

H2020 Excellent Science

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference58 articles.

1. Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and Komppula, M.: Portable Raman Lidar PollyXT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009. a

2. Ansmann, A., Ohneiser, K., Mamouri, R.-E., Knopf, D. A., Veselovskii, I., Baars, H., Engelmann, R., Foth, A., Jimenez, C., Seifert, P., and Barja, B.: Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval, Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, 2021. a, b, c

3. Atmosphere Data Store: CAMS Global Atmospheric Composition Forecasts, Atmosphere Data Store [data set], https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-atmospheric-composition-forecasts, last access: 22 August 2023. a

4. Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016. a

5. Ban, Y., Zhang, P., Nascetti, A., Bevington, A. R., and Wulder, M. A.: Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning, Sci. Rep., 10, 1322, https://doi.org/10.1038/s41598-019-56967-x, 2020. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3