Cavitation Inception on Hydrokinetic Turbine Blades Shrouded by Diffuser

Author:

Picanço Hamilton Pessoa,Kleber Ferreira de Lima Adry,Dias do Rio Vaz Déborah Aline Tavares,Lins Erb Ferreira,Pinheiro Vaz Jerson RogérioORCID

Abstract

Diffuser technology placed around hydrokinetic rotors may improve the conversion of the fluid’s kinetic energy into shaft power. However, rotor blades are susceptible to the phenomenon of cavitation, which can impact the overall power efficiency. This paper presents the development of a new optimization model applied to hydrokinetic blades shrouded by a diffuser. The proposed geometry optimization takes into account the effect of cavitation inception. The main contribution of this work to the state of the art is the development of an optimization procedure that takes into account the effects of diffuser efficiency, ηd, and thrust, CTd. The authors are unaware of any other work available in the literature considering the effect of ηd and CTd on the cavitation of shrouded hydrokinetic blades. The model uses the Blade Element Momentum Theory to seek optimized blade geometry in order to minimize or even avoid the occurrence of cavitation. The minimum pressure coefficient is used as a criterion to avoid cavitation inception. Additionally, a Computational Fluid Dynamics investigation was carried out to validate the model based on the Reynolds-Averaged Navier–Stokes formulation, using the κ−ω Shear-Stress Transport turbulence and Rayleigh–Plesset models, to estimate cavitation by means of water vapor production. The methodology was applied to the design of a 10 m diameter hydrokinetic rotor, rated at 250 kW of output power at a flow velocity of 2.5 m/s. An analysis of the proposed model with and without a diffuser was carried out to evaluate the changes in the optimized geometry in terms of chord and twist angle distribution. It was found that the flow around a diffuser-augmented hydrokinetic blade doubles the cavitation inception relative to the unshrouded case. Additionally, the proposed optimization model can completely remove the cavitation occurrence, making it a good alternative for the design of diffuser-augmented hydrokinetic blades free of cavitation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3