Enhancing Efficiency and Reliability of Tidal Stream Energy Conversion through Swept-Blade Design

Author:

Zheng Yangyang1,Yang Wenxian2ORCID,Wei Kexiang1ORCID,Chen Yanling1,Zou Hongxiang1

Affiliation:

1. School of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China

2. School of Computing and Engineering, The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

The current limited efficiency and reliability of tidal current turbines (TCTs) have posed significant challenges in effectively harnessing tidal stream energy. To address this issue, this paper undertakes both numerical and experimental studies to explore the advantages of swept blades over conventional straight blades in terms of energy capture efficiency and cavitation resistance. It is found that both the sweep length and sweep angle of the blade can influence the power generation efficiency of the TCT. For the particular swept blade investigated in this study, the highest power coefficient is achieved when the sweep length is 0.544 m and the sweep angle is 28.88°. The research also demonstrated that the swept-blade TCT shows a higher power generation efficiency than the straight-blade TCT across a broad range of rotor speeds. To be precise, with the swept blades, the power coefficient of the TCT can be improved by 5–17%, depending on the tip speed ratio. Additionally, swept blades exhibit a superior cavitation resistance. This is evidenced by their higher cavitation numbers across all tip speed ratios in comparison to conventional straight blades.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3