Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams

Author:

Vaz Jerson R. P.1ORCID,de Lima Adry K. F.1ORCID,Lins Erb F.2ORCID

Affiliation:

1. Graduate Program in Natural Resources Engineering, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil

2. Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco, Cabo de Santo Agostinho 54518-430, PE, Brazil

Abstract

Harnessing the remaining energy downstream of dams has recently gained significant attention as the kinetic energy available in the water current is considerable. This work developed a novel study to quantify the energy gain downstream of dams using a horizontal-axis hydrokinetic turbine with a diffuser. The present assessment uses field data from the Tucuruí Dam, where a stream velocity of 2.35 m/s is the velocity at which the highest energy extraction can occur. In this case, a 3-bladed hydrokinetic turbine with a 10 m diameter, shrouded by a flanged conical diffuser, was simulated. Numerical modeling using computational fluid dynamics was carried out using the Reynolds averaged Navier–Stokes formulation with the κ – ω shear stress transport as the turbulence model. The results yield good agreement with experimental and theoretical data available in the literature. Moreover, the turbine power coefficient under the diffuser effect could increase by about 55% for a tip speed ratio of 5.4, and the power output increased by about 1.5 times when compared to the same turbine without a diffuser. Additionally, as there are no hydrokinetic turbines installed downstream of dams in the Amazon region, the present study is relevant as it explores the use of hydrokinetic turbines as an alternative for harnessing the turbined and verted flow from dams. This alternative may help avoid further environmental impacts caused by the need for structural extensions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3