Diagnosing Disk-Space Variation in Distribution Power Transformer Windings Using Group Method of Data Handling Artificial Neural Networks

Author:

Elahi Omid,Behkam RezaORCID,Gharehpetian Gevork B.ORCID,Mohammadi Fazel

Abstract

Monitoring centers in the smart grid exchange the collected data by sensors and smart meters to monitor the current conditions and performance of electric power components. Distribution Power Transformers (DPTs) have a key role in maintaining the integrity of power flow in the smart grid. Online monitoring of DPTs to detect possible faults can potentially increase the reliability of modern power systems. Mechanical defects of DPTs are the major issues in their proper operation that must be detected in their early stage of occurrence. One of the most effective solutions for diagnosing mechanical defects in DPTs is Frequency Response Analysis (FRA). In this study, an appropriate condition monitoring scheme for DPTs is developed to identify even minor winding defects. Disk-Space Variation (DSV), a common DPT windings fault, is applied to the 20 kV-winding of a 1.6 MVA DPT in various locations and with different severity. Their corresponding frequency responses are then computed, and all four components of the frequency responses, i.e., amplitude, argument, and real and imaginary parts, are evaluated. Different data-driven-based indices are implemented to extract appropriate feature vectors in the preprocessing stage. Group Method of Data Handling (GMDH) Artificial Neural Networks is proposed to assist monitoring centers in interpreting FRA signatures and identifying DPT defects at primary stages. GMDH has a data-dependent structure, which gives high flexibility to modeling nonlinear characteristics of FRA test results with different data sizes. It is demonstrated that the proposed approach is capable of accurately determining the fault location and fault severity. The proposed Artificial Intelligence (AI)-based approach is used to extract essential features from frequency response traces in order to detect the position and degree of Disk-Space Variation (DSV) in the DPT windings. The experimental results verify the effectiveness of the proposed methods in determining the severity and location of DSV defects.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3