Experimental Analysis of Ultra-High-Frequency Signal Propagation Paths in Power Transformers

Author:

Beura Chandra PrakashORCID,Beltle MichaelORCID,Wenger Philipp,Tenbohlen StefanORCID

Abstract

Ultra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3