Quantitative Analysis of Surface Partial Discharges through Radio Frequency and Ultraviolet Signal Measurements

Author:

Kozioł Michał1ORCID,Nagi Łukasz1ORCID,Boczar Tomasz1,Nadolny Zbigniew2ORCID

Affiliation:

1. Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland

2. Institute of Electrical Power Engineering, Poznan University of Technology, 60-965 Poznań, Poland

Abstract

In high voltage insulation systems, dielectric materials may be exposed to partial discharges (PD), which can lead to equipment failures and safety hazards. Therefore, it is crucial to detect and characterize PD activity on the surface of insulation systems. Techniques such as radio frequency signal analysis and ultraviolet radiation emission detection are commonly used for this purpose. In this research study, an analysis was conducted on the signals emitted by surface PD in the radio frequency and ultraviolet radiation emission ranges. The goal was to indicate possible directions for further basic research aimed at building a knowledge base and improving measurement methods. The analysis confirmed that radio frequency and ultraviolet signal analysis can provide important information about the activity and location of PD on the surface, including the intensity and nature of PD. The experimental investigation presented in this paper provides valuable insights into the potential for using radio frequency and ultraviolet signals to enhance diagnostic techniques for monitoring the condition of insulation systems in high-voltage equipment.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3