Author:
Zhou Xiaofeng,Lu Zhigang,Zhao Ruifeng,Xu Zhanqiang,Zhang Hong
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Bai, Z.Y., Pang, Y., Xiang, Z., Wong, C.K., Wang, L., Lam, C.S., et al.: A capacitive-coupling winding tap injection DSTATCOM integrated with distribution transformer for balance and unbalance operations. IEEE Trans. Industr. Electron. 70(2), 1081–1093 (2023)
2. Cai, D.F.: Physics-informed distribution transformers via molecular dynamics and deep neural networks. J. Comput. Phys. 4(7), 16–34 (2022)
3. Elahi, O., Behkam, R., Gharehpetian, G.B., Mohammadi, F.: Diagnosing disk-space variation in distribution power transformer windings using group method of data handling artificial neural networks. Energies 15(23), 102–117 (2022)
4. Fereydouni, M., Rokrok, E., Taheri, S.: Design of a hybrid transformer based on an indirect matrix converter for distribution networks. Electric Power Comp. Syst. 7(10), 92–94 (2022)
5. Hong, L.C., Chen, Z.H., Wang, Y.F., Shahidehpour, M., Wu, M.H.: A novel SVM-based decision framework considering feature distribution for Power Transformer Fault Diagnosis. Energy Rep. 8(13), 9392–9401 (2022)