Optimization of the SAG Grinding Process Using Statistical Analysis and Machine Learning: A Case Study of the Chilean Copper Mining Industry

Author:

Saldaña Manuel12ORCID,Gálvez Edelmira3,Navarra Alessandro4ORCID,Toro Norman1ORCID,Cisternas Luis A.2ORCID

Affiliation:

1. Faculty of Engineering and Architecture, Universidad Arturo Prat, Iquique 1110939, Chile

2. Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1270300, Chile

3. Department of Metallurgical and Mining Engineering, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta 1270709, Chile

4. Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada

Abstract

Considering the continuous increase in production costs and resource optimization, more than a strategic objective has become imperative in the copper mining industry. In the search to improve the efficiency in the use of resources, the present work develops models of a semi-autogenous grinding (SAG) mill using statistical analysis and machine learning (ML) techniques (regression, decision trees, and artificial neural networks). The hypotheses studied aim to improve the process’s productive indicators, such as production and energy consumption. The simulation of the digital model captures an increase in production of 4.42% as a function of mineral fragmentation, while there is potential to increase production by decreasing the mill rotational speed, which has a decrease in energy consumption of 7.62% for all linear age configurations. Considering the performance of machine learning in the adjustment of complex models such as SAG grinding, the application of these tools in the mineral processing industry has the potential to increase the efficiency of these processes, either by improving production indicators or by saving energy consumption. Finally, the incorporation of these techniques in the aggregate management of processes such as the Mine to Mill paradigm, or the development of models that consider the uncertainty of the explanatory variables, could further increase the performance of productive indicators at the industrial scale.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3