Effect of Size-Distribution Environment on Breakage Parameters Using Closed-Cycle Grinding Tests

Author:

Petrakis Evangelos1ORCID

Affiliation:

1. School of Mineral Resources Engineering, University Campus, Technical University of Crete, Kounoupidiana, 73100 Chania, Greece

Abstract

The so-called population balance model (PBM) is the most widely used approach to describe the grinding process. The analysis of the grinding data is carried out using—among others—the one-size fraction BII method. According to the BII method, the breakage parameters can be determined when a narrow particle size fraction is used as feed material to the mill. However, it is commonly accepted that these parameters are influenced by changing the particle size distribution in the mill. Thus, this study examines the breakage parameters through kinetic testing in different natural-size distribution environments generated by closed-cycle grinding tests that simulate industrial milling conditions. The differentiation of the milling environments was accomplished using various reference sieves in the closed-cycle tests. The experimentally determined breakage parameters were back-calculated and then used to simulate the closed-cycle tests using the MODSIMTM software. Additionally, the energy efficiency was evaluated based on the specific surface area of the grinding products and the energy consumption. The results of the kinetic tests showed that the breakage rate of the coarse particles increases as the aperture size of the reference sieve decreases, and consequently, the content of fines in the mill increases. The back-calculated breakage parameters can be reliably used to simulate closed-cycle circuits, thus helping control industrial milling operations.

Publisher

MDPI AG

Subject

General Materials Science

Reference58 articles.

1. Effective circulating load ratio in mill circuit for milling capacity and further flotation process—Lab scale study;Pural;Physicochem. Probl. Miner.,2022

2. Reliability of the non-linear modeling in predicting the size distribution of the grinding products under different operating conditions;Petrakis;Min. Metall. Explor.,2023

3. Mineralogical and surface chemical characterization of flotation feed andproducts after wet and dry grinding;Peltoniemi;Miner. Eng.,2020

4. Energy Consumption in Mining Comminution;Jeswiet;Procedia CIRP,2016

5. Helping to reduce mining industry carbon emissions: A step-by-step guide to sizing and selection of energy efficient high pressure grinding rolls circuits;Morrell;Miner. Eng.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3