Enhancing the Grinding Efficiency of a Magnetite Second-Stage Mill through Ceramic Ball Optimization: From Laboratory to Industrial Applications

Author:

Wu Caibin1,Chen Zhilong1,Liao Ningning2,Zeng Chong1,Wang Yihan1,Tian Jingkun1

Affiliation:

1. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

Ceramic ball milling has demonstrated remarkable energy-saving efficiency in industrial applications. However, there is a pressing need to enhance the grinding efficiency for coarse particles. This paper introduces a novel method of combining media primarily using ceramic balls supplemented with an appropriate proportion of steel balls. Three grinding media approaches, including the utilization of steel balls, ceramic balls, and a hybrid combination, were investigated. Through an analysis of the grinding kinetics and the R–R particle size characteristic formulas, the study compares the breakage rate and particle size distribution changes for the three setups. The results indicate that employing binary media effectively improves the grinding efficiency for +0.3 mm coarse particles while maintaining the energy-saving advantages of ceramic ball milling. Simultaneously, the uniformity of the ground product is ensured. This proposed approach has been successfully validated in industrial applications, providing robust theoretical support for the expansion of ceramic ball milling applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3