The Influence of the Grinding Media Diameter on Grinding Efficiency in a Vibratory Ball Mill

Author:

Tomach Paweł1ORCID

Affiliation:

1. AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Machinery Engineering and Transport, 30-059 Kraków, Poland

Abstract

The grinding process plays a crucial role in industry, allowing for the reduction of particle sizes of raw materials and substances to the required fineness—either as a finished product or for further technological processes. The high demand for micro- and nanopowders or suspensions is associated with the high energy consumption of the milling process. Therefore, optimizing the milling process, including correctly selecting grinding media, is essential to reduce energy consumption. This article presents experimental studies of the grinding process of a model material (quartz sand) in a laboratory vibratory mill. Five sets of grinding media with different diameters were used in the research, and grinding was conducted for various durations. The studies showed that the vibratory grinding process is efficient for each set of grinding media and grinding durations. The research has shown that conducting studies on the proper selection of mills is beneficial, especially regarding very fine grinding of various materials. The study confirmed that properly selecting grinding media sets can significantly accelerate the grinding process. For the selected technological variant, it was demonstrated that using 15 mm grinding media, compared to 12 mm, resulted in a 22.5% reduction in grinding time to achieve a specified particle size class of 0–10 μm.

Funder

AGH University of Krakow

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3