Development MPC for the Grinding Process in SAG Mills Using DEM Investigations on Liner Wear

Author:

Beloglazov Ilia1ORCID,Plaschinsky Vyacheslav2ORCID

Affiliation:

1. Department of Automation of Technological Processes and Production, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia

2. Mechanical Engineering Department, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia

Abstract

The rapidly developing mining industry poses the urgent problem of increasing the energy efficiency of the operation of basic equipment, such as semi-autogenous grinding (SAG) mills. For this purpose, a large number of studies have been carried out on the establishment of optimal operating parameters of the mill, the development of the design of lifters, the rational selection of their materials, etc. However, the dependence of operating parameters on the properties of the ore, the design of the linings and the wear of lifters has not been sufficiently studied. This work analyzes the process of grinding rock in SAG mill and the wear of lifters. The discrete element method (DEM) was used to simulate the grinding of apatite-nepheline ore in a mill using different types of linings and determining the process parameters. It was found that the liners operating in cascade mode were subjected to impact-abrasive wear, while the liners with the cascade mode of operation were subjected predominantly to abrasive wear. At the same time, the results showed an average 40–50% reduction in linear wear. On the basis of modelling results, the service life of lifters was calculated. It is concluded that the Archard model makes it possible to reproduce with sufficient accuracy the wear processes occurring in the mills, taking into account the physical and mechanical properties of the specified materials. The control system design for the grinding process for SAG mills with the use of modern variable frequency drives (VFD) was developed. With the use of the proposed approach, the model predictive control (MPC) was developed to provide recommendations for controlling the optimum speed of the mill drum rotation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3