Optimization of CMT Characteristic Parameters for Swing Arc Additive Manufacturing of AZ91 Magnesium Alloy Based on Process Stability Analysis

Author:

Zhang Zhongrui12,Shen Junqi123ORCID,Hu Shengsun12,Chen Yang12,Yin Chengxuan12,Bu Xianzheng4

Affiliation:

1. Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300354, China

2. School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China

3. International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University, Shaoxing 312000, China

4. Beijing Hangxing Machinery Co., Ltd., Beijing 100013, China

Abstract

The droplet transfer behavior and stability of the swing arc additive manufacturing process of AZ91 magnesium alloy based on the cold metal transfer (CMT) technique were studied by analyzing the electrical waveforms and high-speed droplet images as well as the forces on the droplet, and the Vilarinho regularity index for short-circuit transfer (IVSC) based on variation coefficients was used to characterize the stability of the swing arc deposition process. The effect of the CMT characteristic parameters on the process stability was investigated; then, the optimization of the CMT characteristic parameters was realized based on the process stability analysis. The results show that the arc shape changed during the swing arc deposition process; thus, a horizontal component of the arc force was generated, which significantly affected the stability of the droplet transition. The burn phase current I_sc_wait presented a linear function relation with IVSC, while the other three characteristic parameters, i.e., boost phase current I_boost, boost phase duration t_I_boost and short-circuiting current I_sc2, all had a quadratic correlation with IVSC. A relation model of the CMT characteristic parameters and IVSC was established based on the rotatable 3D central composite design; then, the optimization of the CMT characteristic parameters was realized using a multiple-response desirability function approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3