Thermographic Observation and Hydrodynamic Patterns of Inclined Ethanol Droplet Train Impingement on a Non-Uniformly Heated Glass Surface

Author:

Kanbur Baris Burak,Heng Sheng Quan,Duan Fei

Abstract

Droplet train impingement is a fundamental approach to mimic the complicated interactions between the fluid and the substrate in advanced thermal engineering applications in industry. Differently from previous studies, the main original contribution of this study is to perform an inclined droplet train impingement on a non-uniformly heated surface. Ethanol was used as the liquid for droplet train impingement applications, while glass substrate was selected as the target surface. The inclined flow angle was 63 degrees. Both optical and thermographic observations were performed on the target surface by focusing on the droplet impact area. Three experimental sets were created with the Weber numbers 667.57, 841.90, and 998.01. A surface temperature range was selected between 85.00 °C and 200.00 °C, which was above the boiling point of the ethanol. The maximum spreading length was measured at 0.97 mm at the surface temperature of 82.00 °C for the experiment with the Weber number of 998.01, whilst the minimum spreading length was found at 0.18 mm at the highest surface temperature for the experiment with the Weber number of 667.57. A uniform splashing direction was observed above 170.00 °C for all experiments, which meant that the sign of the transition regime appeared.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transfer characteristics of controlled droplet trains impacting solid surfaces;International Journal of Heat and Mass Transfer;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3