AutoTuning Environment for Static Obstacle Avoidance Methods Applied to USVs

Author:

Guardeño Rafael,López Manuel J.,Sánchez Jesús,Consegliere Agustín

Abstract

This work is focused on reactive Static Obstacle Avoidance (SOA) methods used to increase the autonomy of Unmanned Surface Vehicles (USVs). Currently, there are multiple approaches to avoid obstacles, which can be applied to different types of USV. In order to assist in the choice of the SOA method for a particular vessel and to accelerate the pretuning process necessary for its implementation, this paper proposes a new AutoTuning Environment for Static Obstacle Avoidance (ATESOA) methods applied to USVs. In this environment, a new simplified modelling of a LIDAR (Laser Imaging Detection and Ranging) sensor is proposed based on numerical simulations. This sensor model provides a realistic environment for the tuning of SOA methods that, due to its low load computation, is used by evolutionary algorithms for the autotuning. In order to analyze the proposed ATESOA, three SOA methods were adapted and implemented to consider the measurements given by the LIDAR model. Furthermore, a mathematical model is proposed and evaluated for using as USV in the simulation enviroment. The results obtained in numerical simulations show how the new ATESOA is able to adjust the SOA methods in scenarios with different obstacle distributions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference71 articles.

1. Unmanned surface vehicles: An overview of developments and challenges

2. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres

3. A Review of Motion Planning Techniques for Automated Vehicles;González;IEEE Trans. Intell. Transp. Syst.,2016

4. Handbook of Marine Craft Hydrodynamics and Motion Control;Fossen,2011

5. Marine Control Systems;Fossen,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3