Identifying Leaf Phenology of Deciduous Broadleaf Forests from PhenoCam Images Using a Convolutional Neural Network Regression Method

Author:

Cao MengyingORCID,Sun YingORCID,Jiang Xin,Li Ziming,Xin Qinchuan

Abstract

Vegetation phenology plays a key role in influencing ecosystem processes and biosphere-atmosphere feedbacks. Digital cameras such as PhenoCam that monitor vegetation canopies in near real-time provide continuous images that record phenological and environmental changes. There is a need to develop methods for automated and effective detection of vegetation dynamics from PhenoCam images. Here we developed a method to predict leaf phenology of deciduous broadleaf forests from individual PhenoCam images using deep learning approaches. We tested four convolutional neural network regression (CNNR) networks on their ability to predict vegetation growing dates based on PhenoCam images at 56 sites in North America. In the one-site experiment, the predicted phenology dated to after the leaf-out events agree well with the observed data, with a coefficient of determination (R2) of nearly 0.999, a root mean square error (RMSE) of up to 3.7 days, and a mean absolute error (MAE) of up to 2.1 days. The method developed achieved lower accuracies in the all-site experiment than in the one-site experiment, and the achieved R2 was 0.843, RMSE was 25.2 days, and MAE was 9.3 days in the all-site experiment. The model accuracy increased when the deep networks used the region of interest images rather than the entire images as inputs. Compared to the existing methods that rely on time series of PhenoCam images for studying leaf phenology, we found that the deep learning method is a feasible solution to identify leaf phenology of deciduous broadleaf forests from individual PhenoCam images.

Funder

Yongjiu Dai

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3