Plugging the Gaps in the Global PhenoCam Monitoring of Forests—The Need for a PhenoCam Network across Indian Forests

Author:

Jose Karun1,Chaturvedi Rajiv Kumar1ORCID,Jeganathan Chockalingam2ORCID,Behera Mukunda Dev3ORCID,Singh Chandra Prakash4ORCID

Affiliation:

1. Department of Humanities and Social Sciences, BITS Pilani K K Birla Goa Campus, Vasco da Gama 403726, India

2. Department of Remote Sensing, Birla Institute of Technology (BIT), Mesra, Ranchi 835215, India

3. Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology (IIT) Kharagpur, Kharagpur 721302, India

4. Space Applications Centre, Ahmedabad 380015, India

Abstract

Our understanding of the impact of climate change on forests is constrained by a lack of long-term phenological monitoring. It is generally carried out via (1) ground observations, (2) satellite-based remote sensing, and (3) near-surface remote sensing (e.g., PhenoCams, unmanned aerial vehicles, etc.). Ground-based observations are limited by space, time, funds, and human observer bias. Satellite-based phenological monitoring does not carry these limitations; however, it is generally associated with larger uncertainties due to atmospheric noise, land cover mixing, and the modifiable area unit problem. In this context, near-surface remote sensing technologies, e.g., PhenoCam, emerge as a promising alternative complementing ground and satellite-based observations. Ground-based phenological observations generally record the following key parameters: leaves (bud stage, mature, abscission), flowers (bud stage, anthesis, abscission), and fruit (bud stage, maturation, and abscission). This review suggests that most of these nine parameters can be recorded using PhenoCam with >90% accuracy. Currently, Phenocameras are situated in the US, Europe, and East Asia, with a stark paucity over Africa, South America, Central, South-East, and South Asia. There is a need to expand PhenoCam monitoring in underrepresented regions, especially in the tropics, to better understand global forest dynamics as well as the impact of global change on forest ecosystems. Here, we spotlight India and discuss the need for a new PhenoCam network covering the diversity of Indian forests and its possible applications in forest management at a local level.

Funder

ISRO’s Geosphere Biosphere Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3