Author:
Lin Shanggang,Jin Lianwen,Chen Ziwei
Abstract
Landing an unmanned aerial vehicle (UAV) autonomously and safely is a challenging task. Although the existing approaches have resolved the problem of precise landing by identifying a specific landing marker using the UAV’s onboard vision system, the vast majority of these works are conducted in either daytime or well-illuminated laboratory environments. In contrast, very few researchers have investigated the possibility of landing in low-illumination conditions by employing various active light sources to lighten the markers. In this paper, a novel vision system design is proposed to tackle UAV landing in outdoor extreme low-illumination environments without the need to apply an active light source to the marker. We use a model-based enhancement scheme to improve the quality and brightness of the onboard captured images, then present a hierarchical-based method consisting of a decision tree with an associated light-weight convolutional neural network (CNN) for coarse-to-fine landing marker localization, where the key information of the marker is extracted and reserved for post-processing, such as pose estimation and landing control. Extensive evaluations have been conducted to demonstrate the robustness, accuracy, and real-time performance of the proposed vision system. Field experiments across a variety of outdoor nighttime scenarios with an average luminance of 5 lx at the marker locations have proven the feasibility and practicability of the system.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献