Abstract
Straw is a by-product from cereal cultivation. Using straw surplus as a biofuel is a popular means of its management. However, before being used for fuel purposes, straw can be successfully used as a sorbent. The present study investigated the sorption properties of wheat straw (Triticum aestivum L.) modified with ammonia water and epichlorohydrin against the reactive dye Reactive Black 5 (RB5). The tested sorbents were characterized based on FTIR, elemental analysis (C/N content), and pHPZC. The scope of the research included, among others, research on the effect of pH (pH 2–11) on the RB5 sorption efficiency, research on sorption kinetics, and determination of the maximum sorption capacity of the tested sorbents. The sorption efficiency of RB5 on the tested sorbents was the highest at pH 2–3. The experimental data from the research on the sorption kinetics of RB5 were best described by a pseudo-second-order model. The introduction of primary amine groups to the structure of sorbents significantly increased their sorption capacity towards RB5. The obtained sorption capacity of the aminated straw and the aminated straw pre-activated with epichlorohydrin was 24.12 mg RB5/g and 91.04 mg RB5/g, respectively, and it was higher by 44.3% and 444.5% compared to the unmodified straw.
Funder
University of Warmia and Mazury in Olsztyn
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction